Polytechnic University of Valencia Congress, Ampere 2019

Font Size: 
TOSHIYUKI SAMESHIMA, T. Kikuchi, T. Uehara, T. Arima, M. Hasumi, T. Miyazaki, G. Kobayashi, I. Serizawa3

Last modified: 14-10-2019


We report a microwave heating system with a carbon heating tube (CHT) made by a 4-mm diameter quartz tube filled carbon particles and Ar gas at 1400 Pa. 2.45-GHz microwave at 200 W was introduced to a 300-dimameter metal cavity, in which 60-mm-long CHT was set at the central position. The numerical simulation with a finite element moment method resulted in the standing wave of the electric field caused by three dimensional Fresnel interference effect with low high electric field intensity ranging from from 1 to 6 kV/m because of effective absorption of microwave power by the CHT. The lowest average electrical field intensity of 5 kV/m in the cavity space was given by the electrical conductivity of carbon ranging from 10 to 55 S/m. The CHT with 55 S/m heated to 1200oC by microwave irradiation at 200 W. This heating method was applied to activate 1.0x1015-cm-2 boron and phosphorus implanted regions in n-type crystalline silicon substrate to fabricate pn junction and solar cells. The CHT heating at 1200oC realized decrease in the sheet resistivity to 146 Ω/sq, decrease in the density of defect states to 1.3x1011 and 9.2x1010 cm-2 for boron (p+) and phosphorus (n+) implanted surfaces, and solar cell characteristic with a conversion efficiency of 15% under illumination of air mass 1.5 at 0.1 W/cm2.

Full Text: PDF