Polytechnic University of Valencia Congress, 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018

Font Size: 
Concrete-filled round-ended steel tubular stub columns under concentric and eccentric loads
Ana Piquer Vicent, David Hernández-Figueirido, Carmen Ibáñez Usach

Last modified: 26-04-2018

Abstract


In the past, many works to study the mechanical behaviour of concrete filled steel tubular (CFST) stub columns have been conducted. Some of the applications of these composite columns oblige to meet higher requirements of ductility and load-bearing capacity. Traditionally, circular and rectangular tubes have been employed but recently new cross-sectional shapes of these composite columns are being designed and investigated with the aim of optimizing their mechanical behaviour. In this line, concrete-filled round-ended steel tubular columns (CFRT) have appeared as an alternative. However, the number of experimental programs to characterize their mechanical response is still scarce. In order to contribute to the test results database, in this paper an experimental study of 9 concrete-filled round-ended steel tubular stub columns is presented. All the specimens were designed with the same cross-sectional round-ended shape and have the same dimensions. In this program, both normal and high-strength concrete were employed as infill. During the tests, the columns were subjected to axial compression loads but under different eccentricities. The influence of eccentricity and concrete strength on the ultimate load bearing capacity of the concrete-filled round-ended steel tubular are discussed. Besides, the combined action of both components in this type of concrete-filled tubes as well as the effect of the concrete infill are studied.


Full Text: PDF