Polytechnic University of Valencia Congress, CARPE Conference 2019: Horizon Europe and beyond

Font Size: 
Active Power Filter Shape Class Model Predictive Controller tuning by Multiobjective Optimization
Carlos Cateriano Yáñez, Jörg Richter, Georg Pangalos, Gerwald Lichtenberg, Javier Sanchís Saez

Last modified: 05-11-2019


As the share of renewable energy sources (RES) in distribution grids increases, several power quality challenges arise. Due to its intermittent nature, RES lead to voltage and frequency fluctuations in the grid that affect power quality. Moreover, as RES are connected via power converters, there is also a higher harmonic distortion pollution introduced by the switching power electronics involved, (Liang, 2017).

A proven solution is the implementation of Active Power Filters (APF), which are able to compensate the unbalanced, harmonic, and reactive components of a load under different supply conditions. In order to achieve the desired compensation characteristics, the selection of an appropriate control strategy is critical, (Kumar & Mishra, 2016). Classic APF control strategies achieve said goals, although with struggles under changing load scenarios with limitations on their operational modes, (Weihe, Cateriano Yáñez, Pangalos, & Lichtenberg, 2018).

This paper proposes the use of an advanced model-based control method, i.e. Model Predictive Control (MPC), to improve the performance of APF devices. Model-based control methods allow for better performance when the model of the plant is known before hand or through measurements, the MPC extends this further by introducing a cost function that ensures optimal operation even under constraints, (Maciejowski, 2002).



Kumar, P., & Mishra, M. K. (2016). A comparative study of control theories for realizing APFs in distribution power systems. 2016 National Power Systems Conference (NPSC), 1–6. https://doi.org/10.1109/NPSC.2016.7858905

Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855–866. https://doi.org/10.1109/TIA.2016.2626253

Maciejowski, J. M. (2002). Predictive Control with Constraints. Pearson education.

Weihe, K., Cateriano Yáñez, C., Pangalos, G., & Lichtenberg, G. (2018, July). Comparison of Linear State Signal Shaping Model Predictive Control with Classical Concepts for Active Power Filter Design. 167–174. Retrieved from http://www.scitepress.org/PublicationsDetail.aspx?ID=QatbWGUbqSE=&t=1


Power quality, harmonic mitigation, load compensation, active power filters, model predictive control

Full Text: PDF