Congresos de la Universitat Politècnica de València, CIT2016. Congreso de Ingeniería del Transporte

Por defecto: 
Beatriz Molina Serrano

Última modificación: 04-06-2016


Many variables are included in planning and management of port terminals. They can beeconomic, social, environmental and institutional. Agent needs to know relationshipbetween these variables to modify planning conditions. Use of Bayesian Networks allowsfor classifying, predicting and diagnosing these variables. Bayesian Networks allow forestimating subsequent probability of unknown variables, basing on know variables.In planning level, it means that it is not necessary to know all variables because theirrelationships are known. Agent can know interesting information about how port variablesare connected. It can be interpreted as cause-effect relationship. Bayesian Networks can beused to make optimal decisions by introduction of possible actions and utility of theirresults.In proposed methodology, a data base has been generated with more than 40 port variables.They have been classified in economic, social, environmental and institutional variables, inthe same way that smart port studies in Spanish Port System make. From this data base, anetwork has been generated using a non-cyclic conducted grafo which allows for knowingport variable relationships - parents-children relationships-. Obtained network exhibits thateconomic variables are – in cause-effect terms- cause of rest of variable typologies.Economic variables represent parent role in the most of cases. Moreover, whenenvironmental variables are known, obtained network allows for estimating subsequentprobability of social variables.It has been concluded that Bayesian Networks allow for modeling uncertainty in aprobabilistic way, even when number of variables is high as occurs in planning andmanagement of port terminals.


Palabras clave

sustainability; ports; Bayesian Networks

Texto completo: PDF