Polytechnic University of Valencia Congress, Systems & Design 2017

Font Size: 
New strategies in proprioception’s analysis for newer theories about sensorimotor control
David Muñoz

Last modified: 06-03-2018

Abstract


Abstract

Human’s motion and its mechanisms had become interesting in the last years, where the medecine’s field search for rehabilitation methods for handicapped persons. Other fields, like sport sciences, professional or military world, search to distinguish profiles and ways to train them with specific purposes. Besides, recent findings in neuroscience try  to describe these mechanisms from an organic point of view. Until now, different  researchs had given a model about control motor that describes how the union between the senses’s information allows adaptable movements. One of this sense is the proprioception, the sense which has a quite big factor in the  orientation and position of the body, its members and  joints. For this reason, research for new strategies to explore proprioception and improve the theories of human motion could be done by three different vias. At first, the sense is analysed in a case-study where three groups of persons are compared in a controlled enviroment with three experimental tasks. The subjects belong to each group by the kind of sport they do: sedentary,  normal sportsmen (e.g. athletics, swimming) and martial sportmen (e.g. karate, judo). They are compared thinking about the  following hypothesis:  “Martial Sportmen have a better proprioception than of the other groups’s subjects:  It could  be due to the type of exercises they do in their sports as empirically, a contact sportsman shows significantly superior motor skills to the members of the other two groups. The second via are records from encephalogram (EEG) while the experimental tasks are doing. These records are analised a posteriori  with a set of processing algorithms to extract characteristics about brain’s activity of the proprioception and motion control. Finally , the study tries to integrate graphic tools to make easy to understand final scientific results  which allow us  to explore the brain activity of the subjects through easy interfaces (e.g. space-time events, activity intensity, connectivity, specific neural netwoks or anormal activity). In the future, this application could be a complement to assist doctors, researchers, sports center specialists and anyone who must improve the health and movements of handicapped persons.

Keywords: proprioception, EEG, assesment, rehabilitation.

References:

Röijezon, U., Clark, N.C., Treleaven, J. (2015). Proprioception in musculoskeletal rehabilitation. Part 1: Basic science and principles of assessment and clinical interventions. ManualTher.10.1016/j.math.2015.01.008.

Röijezon, U., Clark, N.C., Treleaven, J. (2015). Proprioception in musculoskeletal rehabilitation. Part 2: Clinical assessment and intervention. Manual Ther.10.1016/j.math.2015.01.009.

Roren, A., Mayoux-Benhamou, M.A., Fayad, F., Poiraudeau, S., Lantz, D., Revel, M. (2008). Comparison of visual and ultrasound based techniques to measure head repositioning in healthy and neck-pain subjects. Manual Ther. 10.1016/j.math.2008.03.002.

Hillier, S., Immink, M., Thewlis, D. (2015). Assessing Proprioception: A Systematic Review of Possibilities. Neurorehab. Neural Repair. 29(10) 933–949.

Hooper, T.L., James, C.R., Brismée, J.M., Rogers, T.J., Gilbert, K.K., Browne, K.L, Sizer, P.S. (2016). Dynamic Balance as Measured by the Y-Balance Test Is Reduced in Individuals with low Back Pain: A Cross-Sectional Comparative Study. Phys. Ther. Sport,10.1016/j.ptsp.2016.04.006.

Zemková, G., Stefániková, G., Muyor, J.M. (2016). Load release balance test under unstable conditions effectivelydiscriminates between physically active and sedentary young adults.

Glave, A.P., Didier, J.J., Weatherwax, J., Browning, S.J., Fiaud, Vanessa. (2014). Testing Postural Stability: Are the Star Excursion Balance Test and Biodex Balance System Limits of Stability Tests Consistent? Gait Posture. 43(2016) 225-227.

Han, Jian., Waddington, G., Adams, R., Anson, J., Liu, Y. (2014). Assessing proprioception: A critical review of methods. J. Sport Health Sci.10.1016/j.jshs.2014.10.004.

Hosp, S., Bottoni, G., Heinrich, D., Kofler, P., Hasler, M., Nachbauer, W. (2014). A pilot study of the effect of Kinesiology tape on knee proprioception after physical activity in healthy women. J. Sci. Med. Sport. 18 (2015) 709-713.

Mima, T., Terada, K., Ikeda, A., Fukuyama, H., Takigawa, T., Kimura, J., Shibasaki, H. (1996). Afferent mechanism of cortical myoclonus studied by proprioception-related SEPs. Clin. Neurophysiol. 104 (1997) 51-59.

Myers, J.B., Lephart, S.M. (2000). The Role of the Sensorimotor System in the Athletic Shoulder. J. Athl.Training.35 (3) 351-363.

Rossi, S., della Volpe, R., Ginannesch, F., Ulivelli, M., Bartalini, S., Spidalieri, R., Rossi, A. (2003). Early somatosensory processing during tonic muscle pain in humans: relation to loss of proprioception and motor 'defensive' strategies. Clin. Neurophysiol. 10.1016/S1388-2457(03)00073-7.

Chaudhary, U., Birbaumer, N., Curado, M.R. (2014). Brain-Machine Interface (BMI) in paralysis. Ann. Phys. Rehabil. Med.10.1016/j.rehab.2014.11.002.

Delorme, A., Makeig, S. (2003). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Meth.10.1016/j.jneumeth.2003.10.009.

Morup, M., Hansen, L.K., Arnfred, S.M. (2006). ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials. J. Neurosci. Meth.10.1016/j.jneumeth.2003.11.008.

Kaminski, M., Blinowska, K., Szelenberger, W. (1996). Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Clin. Neurophysiol. 102 (1997) 216-227.

Korzeniewska, A., Manczak, M., Kaminski, M., Blinowska, K.J., Kasicki, S. (2003). Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J. Neurosci. Meth.10.1016/S0165-0270(03)00052-9.

Morup, M., Hansen, L.K., Parnas, J., Arnfred, S.M. (2005). Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. Neuroimage. 10.1016/j.neuroimage.2005.08.005.

Barwick, F., Arnett, P., Slobounov, S. (2011). EEG correlates of fatigue during administration of a neuropsychological test battery. Clin. Neurophysiol. 10.1016/j.clinph.2011.06.027.

Osuagwu, B.A., Vuckovic, A. (2014). Similarities between explicit and implicit motor imagery in mental rotation of hands: An EEG study. Neuropsycholgia.

Buzsáki, G. (2006). Rhythms of the brain. Ed. Oxford. USA.

Trappenberg, T.P. (2010). Fundamentals of Computational Neuroscience. Ed. Oxford. UK.

Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H., Braun, M. (2009). Automated cortical projection of EEG: Anatomical correlation via the international 10-10 system. Neuroimage. 10.1016/j.neuroimage.2009.02.006.

Jurcak, V., Tsuzuki, Daisuke., Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relativehead-surface-based positioning systems. Neuroimage. 10.1016/j.neuroimage.2006.09.024.

Chuang, L.Y., Huang, C.J., Hung, T.M. (2013). The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. Int. J. Psychophysiology.10.1016/j.ijpsycho.2013.10.002.

Wang, C.H., Tsai, C.L., Tu, K.C., Muggleton, N.G., Juan, C.H., Liang, W.K. (2014). Modulation of brain oscillations during fundamental visuo-spatialprocessing: A comparison between female  collegiate badmintonplayers and sedentary controls. Psychol. Sport Exerc. 10.1016/j.psychsport.2014.10.003.

Proverbio, A.L., Crotti, N., Manfredi, Mirella., Adomi, R., Zani, A. (2012). Who needs a referee? How incorrect basketball actions are automatically detected by basketball players’ brain. Sci Rep-UK. 10.1038/srep00883.

Cheng, M.Y., Hung, C.L., Huang, C.J., Chang, Y.K., Lo, L.C., Shen, C., Hung, T.M. (2015). Expert-novice differences in SMR activity during dart throwing. Biol. Psychol.10.1016/j.biopsycho.2015.08.003.

Ring, C., Cooke, A., Kavussanu, M., McIntyre, D., Masters, R. (2014). Investigating the efficacy of neurofeedback training for expeditingexpertise and excellence in sport. Psychol. SportExerc. 10.1016/j.psychsport.2014.08.005.

Park, J.L., Fairweather, M.M., Donaldson, D.I. (2015). Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. R. 10.1016/j.neubiorev.2015.02.014.

Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G. (2009). Neural efficency of experts’ brain during judgement of actions: A high -resolution EEG study in elite and amateur karate athletes. Behav. Brain. Res. 10.1016/j.bbr.2009.10.034.

Jain, S., Gourab, K., Schindler-Ivens, S., Schmit, B.D. (2012). EEG during peddling: Evidence for cortical control of locomotor tasks. Clin. Neurophysiol.10.1016/j.clinph.2012.08.021.

Behmer Jr., L.P., Fournier, L.R. (2013). Working memory modulates neural efficiency over motor components during a novel action planning task: An EEG study. Behav. Brain. Res. 10.1016/j.bbr.2013.11.031.